Find the Maclaurin series of the function \(f(x)=sinx.\)
Marks: 5
Year: 2019 Final TU FOHSS
Given function: \( f(x) = \sin x \) Maclaurin series formula: \( f(x) = f(0) + x f'(0) + \dfrac{x^2}{2!} f''(0) + \dfrac{x^3}{3!} f'''(0) + \cdots \) Derivatives of \( f(x) \): \( f(x) = \sin x \Right