\[ \text{Prove that } \begin{vmatrix} x & x^{2} & 1\\ y & y^{2} & 1\\ z & z^{2} & 1 \end{vmatrix} = (x-y)(y-z)(z-x) \]
Marks: 5
Year: 2019 Final TU FOHSS
To prove: \[ \begin{vmatrix} x & x^{2} & 1 \\ y & y^{2} & 1 \\ z & z^{2} & 1 \end{vmatrix} = (x - y)(y - z)(z - x) \] Proof: Given determinant: \[ =\begin{vmatrix} x & x^{2} & 1 \\ y & y^{2} & 1 \\ z