A function \( f(x) \) is defined as \[ f(x)= \begin{cases} 2x+3, & -\dfrac{3}{2} \le x < 0 \\ 3-2x, & 0 \le x \le \dfrac{3}{2} \\ -3-2x, & x > \dfrac{3}{2} \end{cases} \] Show that \( f(x) \) is con
Marks: 5
Year: 2022 Final TU FOHSS
$\textbf{Continuity at } x = 0$ For a function to be continuous at \( x = a \), the following three conditions must be satisfied: 1. $\text{The value } f(a) \text{ exists}$ 2. $\text{The limit } \lim{