Chapter Study

BCA Semester 2 Mathematics II () Questions & Answers | Past TU Exam Papers

Practice from Mathematics II with detailed solutions and model answers from past Tribhuvan University exams.

6
Questions
45
Marks
Back to All Chapters

State Rolle's Theorem. Verify Rolle's Theorem for the function

f(x)=x29f(x)=x^2-9

in the interval 3x3-3 \le x \le 3.

MediumNumerical5 marks2022(TU FOHSS Final)

What do you mean by stationary points and inflection points?
Using derivatives, find two numbers whose sum is 20 and the sum of whose squares is minimum.

HardNumerical10 marks2022(TU FOHSS Final)

Verify Rolle's theorem for the function f(x)=sinx,x[0,π]f(x) = \sin x,\quad x \in [0,\pi] and find the point on the curve where the tangent is parallel to the xx-axis.

MediumNumerical5 marks2023(TU FOHSS Final)

Find the maximum and minimum values of the function

f(x)=x3+6x2+9x2\quad \quad f(x) = x^3 + 6x^2 + 9x - 2

Also, find the point of inflection, if any.

MediumNumerical5 marks2023(TU FOHSS Final)

a. Verify Lagrange’s Mean Value Theorem\text{Lagrange’s Mean Value Theorem} for the function

f(x)=x1,x[1,3]\quad \quad f(x) = \sqrt{x - 1},\quad x \in [1,3]

b. Solve the differential equation

xydydx=x2+y2\quad \quad xy \frac{dy}{dx} = x^2 + y^2

HardNumerical10 marks2023(TU FOHSS Final)

a) Using Simpson’s 13\tfrac{1}{3} Rule, evaluate

0111+2x2dx;h=0.25\int_0^1 \frac{1}{1+2x^2}\,dx;\quad h = 0.25

b) Find the maximum and minimum values of the function

f(x)=4x315x2+12x1f(x) = 4x^3 - 15x^2 + 12x - 1

Also, find the point of inflection.

HardNumerical10 marks2024(TU FOHSS Final)
Showing 6 questions

Unit 3: Application of Differentiation (8Hrs) chapter questions with answers for Mathematics II (BCA Semester 2). Prepare for TU exams with our comprehensive question bank and model answers.