Chapter Study

BCA Semester 2 Mathematics II () Questions & Answers | Past TU Exam Papers

Practice from Mathematics II with detailed solutions and model answers from past Tribhuvan University exams.

9
Questions
70
Marks
Back to All Chapters

Solve the following system by Gauss–Seidel method:

4x+yz=8-4x + y - z = -8

3x+6y+2z=13x + 6y + 2z = 1

xy+3z=2x - y + 3z = 2

MediumNumerical5 marks2022(TU FOHSS Final)

Using simplex method, find the optimal solution of

Z=7x1+5x2Z = 7x_1 + 5x_2

subject to

x1+2x26x_1 + 2x_2 \le 6

4x1+3x264x_1 + 3x_2 \le 6

x10,  x20x_1 \ge 0,\; x_2 \ge 0

HardNumerical10 marks2022(TU FOHSS Final)

Using Simpson’s 13\tfrac{1}{3} rule, evaluate

0111+xdx\int_0^1 \frac{1}{1+x}\,dx

with 3 points of intervals.
Find the error of approximation.
How many points are to be considered to make the approximation value within 10510^{-5}?

HardNumerical10 marks2022(TU FOHSS Final)

Evaluate

021+x3dx\int_0^2 \sqrt{1+x^3}\,dx

by using Simpson’s 13\tfrac{1}{3} rule, taking n=4n=4.

MediumNumerical5 marks2023(TU FOHSS Final)

Define pivot element\text{pivot element}, pivot column\text{pivot column}, and consistency \text{consistency }in a system of equations.
Using the simplex method, maximize

F=5x3y\quad F = 5x - 3y

subject to

3x+2y63x + 2y \le 6

x+3y4-x + 3y \ge -4

x0,  y0x \ge 0,\; y \ge 0

HardNumerical10 marks2023(TU FOHSS Final)

Compute the approximate value of the integral

1211+x2dx\int_1^2 \frac{1}{1+x^2}\,dx

by using the composite trapezoidal rule\textbf{composite trapezoidal rule} with three points, and compare the result with the actual value.
Determine the error formula\textbf{error formula} and numerically verify an upper bound\textbf{upper bound} on it.

HardNumerical10 marks2023(TU FOHSS Final)

Using the trapezoidal rule, compute 02(2x21)dx\int_0^2 (2x^2 - 1)\,dx with 4 intervals.
Find the absolute error of approximation from its actual value.

MediumNumerical5 marks2024(TU FOHSS Final)

Using Newton–Raphson method, find a root of x3x4=0x^3 - x - 4 = 0 between 1 and 2 correct to three decimal places.

MediumNumerical5 marks2024(TU FOHSS Final)

Using the simplex method, find the optimal solution of the following linear programming problem.
Maximize

z=15x+12yz = 15x + 12y

Subject to

2x+3y212x + 3y \le 21

3x+2y243x + 2y \le 24

x0,  y0x \ge 0,\; y \ge 0

HardNumerical10 marks2024(TU FOHSS Final)
Showing 9 questions

Unit 6: Computational Method (10Hrs) chapter questions with answers for Mathematics II (BCA Semester 2). Prepare for TU exams with our comprehensive question bank and model answers.